甲壳虫

费曼狂想曲能够进入体内的外科医生

发布时间:2024/8/10 12:54:01   
刘军连医生 https://m-mip.39.net/czk/mipso_4147810.html

年,诺贝尔物理学奖得主理查德·费曼(RichardFeynman)在加州理工学院作了一场题为“ThereisPlentyofRoomattheBottom”(底层研究仍有广阔天地)的演讲,首先设想了体内微型机器人的可能性。

在费曼的猜想中,这类微型机器人依靠微机电系统(Micro-Electro-MechanicalSystem,MEMS)驱动,能够进入体内实施手术。当时,费曼说:「如果我们能够吞下一个外科医生,那么很多复杂的手术都可以变得很有趣、很简单。」

或许是费曼的影响力太大,十年后,科研界还未开展研究,美国导演RichardFleischer就将费曼的设想拍成了经典的科幻电影,《神奇旅程》(FantasticVoyage)。电影中,5名医生被缩小成原体积的几百万分之一,被注射进一位脑血管遭到破坏、性命攸关的患者体内,经过一系列冒险,最终成功找到出血点,及时挽救了病人的生命。

但,能够进入人体的微型机器人,只能是一个幻想吗?答案显然存疑。

自费曼提出「体内外科医生」的概念以来,科学家们便被这一想法所吸引、激励,投入到微型机器人的研究中,并取得了许多不错的成果。科学家们畅想着,在未来,机器真的可以进入人的体内,实现靶向治疗、靶向给药,帮助治疗肿瘤等重大疾病。

1、「史莱姆」机器人

前段时间,一个叫做「史莱姆」(Slime)的磁控粘液微型机器人在NewScientist上火了。

它是由磁性粘液材料制作而成,可以进入体内,取出意外吞噬的小器件。4月1日一发布,立即在科技社区引起巨大轰动,网友纷纷惊掉下巴,浏览点击率迅速超过十万、百万、千万:

与我们常见的机器人不同,这个机器人无论是外形、动作与能力,都更像一个「怪物」,与我们所想象的由刚体硬件打造、五官身躯酷似人类的「机器」「人」有很大的出入。

根据Demo显示,它的外形像一坨乌黑的面团,没头没脸、没手没脚,身躯柔软,外形变化多样。

但虽然其貌不扬,这个「史莱姆」机器人却具备多种奇特的功能,可以变化自己柔软的身躯,在穿越窄缝、修补断开的电线,还可以在人体的消化道内以吞噬的方式取出误食的电子零器件。

即使将它切成几段,再重新拼接,它也有「自愈合」的能力。

「史莱姆」机器人打破了大多数人对「机器人」的传统印象,也凭借其酷炫的未来感与潜在的强大力量,让「体内微型机器人」进入大众的视野。

「史莱姆」机器人的研发成员之一、香港中文大学张立教授介绍,「自愈」能力也是当前软体机器人领域的热门研究方向之一,主要体现为对不同环境的高适应性。而「史莱姆」机器人的强大之处,不仅在于将它切断后、它可以自愈合,还在于将它放到液体中也能保持完整形状,甚至在空气、固体环境中也能穿行无阻。

图注:香港中文大学机械与自动化工程学系教授张立

事实上,近年来微型机器人的研究成果层出不穷,如由微电机驱动的、大小如飞蝇/甲壳虫的飞行机器人。而与它们不同,「史莱姆」机器人的独特之处是在非牛顿液体材料中加入磁性粉末与磁性颗粒,从而实现磁场控制,使其行动灵敏、甚至可以自由变形。

而「史莱姆」机器人所呈现出来的「自愈」能力,也是依托材料本身的特性,加上外界的磁性引导,在「身体」切断后由相距较近的高聚物相互作用,重新融为一体。

需要注意的是,「史莱姆」机器人目前没有自主移动的本领,它的移动伸缩靠的是外部磁场控制里面的钕磁铁(可以理解为「强力小磁球」)。

「『史莱姆』机器人本身没有固定的形状。它是粘液状的,加了磁场后,它会对磁场作出响应。你将磁铁由左往右移动,它就会随着磁铁从左往右。受磁力的大小,它很容易产生形状的变化。例如,如果有人不慎误吞有害元件,把它变成一只手、包裹抓取。」张立向AI科技评论介绍。

这也是张立所领导的先进纳米材料与微型机器人实验室(AdvancedNanomaterialsMicroroboticsLaboratory,ANML)第一次制作磁性粘液机器人。此前,ANML曾制作过许多不同类型的微型纳米机器人,包括3D技术打印的仿生昆虫机器人,均是基于磁场进行远程操控,「但像『史莱姆』机器人这样的粘液状、有如此大变形的,可以像大象的鼻子一样卷起来的,还是第一次。」张立谈道。

更令人惊叹的是,该工作的第一作者、ANML实验室在职博士后孙猛猛从加入ANML、开始研发到发表文章,仅用了半年时间。

图注:孙猛猛博士

「这主要是因为孙猛猛原先在哈尔滨工业大学读博(师从谢晖教授)时就已经有一些想法。过来后,借助我们课题组在相关材料与磁控操作上所积累的大量经验,项目进展得很顺利。」张立介绍。

考虑到人体内部环境的复杂度,张立团队设想,「史莱姆」机器人或许能在消化道有一定的应用空间,原因主要有几点:一是消化道的空腔较大,「史莱姆」机器人在里面的穿梭会比较顺畅;二是人体的消化道本就有许多微生物菌群,尝试体内机器人的风险相对低;三是「史莱姆」机器人的制作材料经过细胞毒性测试,毒性较低,若只在体内短暂停留、后排出体外,理论上是安全的。

当然,目前将「史莱姆」机器人作为体内医治执行器的想法仍处于一个设想阶段,有待进一步探索。

2、体内微型机器人的发展

「史莱姆」机器人的表现可喜,但回溯这种能够进入体内的微型机器人的发展历史,不过短短数十载。

上世纪七十年代,美国情报机构为推进机密研究,试图设计一些能够执行战俘援助和电子拦截任务的微型机器人,但由于当时底层支持技术未完全开发出来,微型机器人原型并没有从这套早期的计算和概念开发出来。

直到21世纪,微型机器人才正式面世。随着微机电、微驱动器等多学科领域的发展作为铺垫,微型机器人取得重要技术突破并逐渐成为国际研究热点。

图注:仿生微型机器人

相对于研究了大半个世纪的大型机器人来说,微型机器人的发展不过二十余年,「能够进入体内的微型机器人」更是屈指可数,国内外均处于刚刚起步的阶段。

微型机器人有不同类别,其中,微型医疗机器人被业界认为最有发展前途的应用领域。日本科技政策研究院曾预测「未来医疗领域使用微型机器人和机器人的手术将超过全部医疗手术的一半」。

在国外,日本率先采用「机器人外科医生」的计划,并正在开发能在人体血管中穿行、用于发现并杀死癌细胞的超微型机器人。美国马里兰州的约翰·霍普金实验室研制出一种装有微型硅温度计和微型电路的微型检测装置,吞入体内,可以将体内的温度信息发给记录器。瑞典科学家发明了一种大小如英文标点符号的机器人,未来可移动单一细胞或捕捉细菌,进而在人体内进行各种手术。

国内研究员也早早

转载请注明:http://www.aideyishus.com/lkgx/7345.html

------分隔线----------------------------